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ABSTRACT 

This repor t  considers t h e  t i m e  dependent rms response of a base 

exc i ted  single-degree-of-freedom system t o  time-modulated s t a t i o n a r y  

random vibra t ion .  The exc i t a t ion  i s  character ized by a 

power s p e c t r a l  dens i ty  funct ion having an a r b i t r a r y  bandwidth and 

cen te r  frequency, and by a de te rmin i s t i c  modulating function. Closed 

form so lu t ions  are presented f o r  t h ree  modulating funct ions:  

(1) t he  s t e p  funct ion,  (2) t he  rectangular  funct ion,  and (3) t h e  

decaying exponential  function. 

f o r  a r b i t r a r y  modulating funct ions.  

An approximate so lu t ion  is provided 

A parameter study w a s  made wherein parameters descr ibing system 

damping, input  t o  system bandwidth and frequency r a t i o s ,  and 

modulating funct ion w e r e  var ied  independently. Dimensionless response 

h i s t o r i e s  w e r e  computed and p l o t t e d  f o r  t hese  cases.  

i t  w a s  concluded t h a t  t he  maximum t r a n s i e n t  r m s  response can d i f f e r  

s i g n i f i c a n t l y  from what would be predicted by enveloping t h e  t r ans i en t s  

with s t a t iona ry  l e v e l s  and computing s t a t iona ry  response. P r a c t i c a l  

examples were suggested i n  which t h e  d i f fe rence  could be a f a c t o r  of 

two i n  e i t h e r  d i rec t ion .  

From t h i s  study 

ii 



TABLE OF CONTENTS 

I. INTRODUCTION 

11. ANALYSIS 

1. Idealizations 

2. The Variance of Structural Response 

a. The Step Modulation 
b. The Rectangular Modulation 
c. The Exponential Modulation 

111. PARAMETER STUDY 

1. Parameter Matrices 

2. Discussion of Results 

IV. SUPERPOSITION 

V. CONCLUDING REMARKS 

1. Summary 

2. Recommendations 

REFERENCES 

APPENDIX: Plots from the Parameter Study 

12 
13 
15 

17 

1 7  

20 

40 

46 

46 

47 

49 

50 

iii 



LIST OF FIGURES 

Figur,e No. 

1 

7 

8 

9 

10 

11 

12 

13 

' T i t l e  Page 

RMS Response f o r  f ( t )  = u ( t )  
5 = 0.1,  p/w = 0.5 

RMs Response f o r  f ( t )  =I u ( t )  
5 = 0.1, p/u = 1 

RMS Response f o r  f ( t )  = u ( t )  
5 = 0.1,  p/w = 2 

Relat ionship of Power Spec t r a l  Density 
and Frequency Response Functions 

RMS Response f o r  f ( t )  a u ( t )  
p/w = 0.5 

RMS Response f o r  f ( t )  = u ( t )  
5 = 0.01, p/w = 1 

RMS Response f o r  f ( t )  = u ( t )  
5 = 0.01, p/w = 2 

RMS Response f o r  f ( t )  =: u ( t )  
5 = 0.01, a/B = 1 

RMS Response f o r  f ( t )  = u ( t )  - u(t- to)  

wto/2T = 1.5 

RMs Response f o r  f ( t )  = u ( t ) e  
5 = 0.01, p/w = 0.5, 

5 = 0.01, p/w = 2,  a/B =: 1, 

- A t  

a/B = 1, h / B  = 10 

5 = 0.01, p/w = 1, 
cl/B = 1, h / B  = 0 . 1  

5 = 0.01, p/w = 1, h /B  = 1 

- A t  RMS Response f o r  f ( t )  = u ( t ) e  

- A t  RMS Response f o r  f ( t )  = u ( t ) e  

- h t  RMS Response f o r  f ( t )  = u ( t )  e 

5 = 0.01, a/B = 1, h / B  = 1 

2 1  

22 

2 3  

25 

27 

28 

29 

30 

31 

34 

35 

37 

38 

i v  



Figure No. 

14 

15 

16 

17 

'LIST OF FIGURES (cont'd) 

Title 

Normalized Component Response to a 
Simulated Pyrotechnic Shock 
Environment 

Staircase Function Approximating 
f(t) = u(t)e-ht 

Comparison of Approximate and Exact 
Solutions for Ws Response 
f(t) = u(t)e-ht, 5 = 0.01, 
p/w = 1, dfl = 1, A / $  = 1 

Comparison of Approximate and Exact 
Solutions for RMs Response 
f(t) = u(t)e-ht, 5 = 0.1, 
p/w = 0.5, a/ f l  = 0.1, A / @  = 1 

39 

42 

4 3  

44  

V 



* 
LIST OF SMVIBOLS 

i 

N 

P 

Mean value of [ 3 averaged over an ensemble of 
sample records 

Modulating function 

Response of a single-degree-of-freedom system 
to a unit impulse 

IP- 
Autocovariance function of the random process g(t> 

- 
Time dependent mean of the random process x(t> 

Number of steps in a staircase function 

Center frequency of a narrow-band type power 
spectral density function 

Autocorrelation function of the random process 
- T(t> (Similar definitions apply for z(t> and Z(t>.) 
Cross correlation function of two processes 
turned on at t = 5 and t = E , ,  respectively 1 

s p  The two sided power spectral density function of 
the stationary random process x(t) 

t Independent time parameter 

Cut-off time of the rectangular modulating function 

u(t> The unit step function 

v i = l y 2  Dummy variables iy 

* 
Other symbols representing combined constants and time functions 
appearing in Equations (2) - ( 6 )  are defined on pages 9 to 12. 

vi 



a 

B 

0 
X 

T 

Tl, T2  

n 

w 

w 
0 

A s t a t i o n a r y  random process 

A t i m e  modulated s t a t i o n a r y  process 

The response process f o r  a simple mechanical 
o s c i l l a t o r  

The decay rate of t h e  au tocor re l a t ion  funct ion 
defined f o r  - x ( t >  

The decay rate of t h e  system impulse response 
funct ion 

Cr i t ica l  damping r a t i o  f o r  t h e  system 

Decay rate of t h e  exponential  modulating 
funct ion 

T i m e s  a t  which s t e p s  occur i n  t h e  staircase 
funct ion 

- The constant nus value of the  s t a t i o n a r y  process 
- X ( t >  

The t i m e  dependent r m s  response t o  a t i m e -  
modulated s t a t i o n a r y  process 

The asymptotic value of rms response t o  a s t e p  
input  of z(t> 
Correlat ion i n t e r v a l ,  t2 - tl 

Dummy va r i ab le s  

Independent frequency parameter 

Damped n a t u r a l  frequency of t h e  system 

Undamped n a t u r a l  frequency of t h e  system 

v i i  



AN ANALYTICAL BASIS FOR 

TIME-MODULATED RANDOM VIBRATION TESTING 

I. INTRODUCTION 

Many environments observed i n  na tu re  are charac te r ized  by a l imi ted  

number of o s c i l l a t i o n s  of a f a i r l y  high l eve l .  Examples of t h i s  class of 

environments may be measured within a spacecraf t  during launch, wi th in  a 

t r anspor t e r  dr iv ing  over rough roads o r  wi th in  a bui ld ing  during an earth- 

quake. The dynamic s t r u c t u r e  i n  quest ion -- spacecraf t ,  t r anspor t e r ,  o r  

bui lding -- is  general ly  expected t o  surv ive  a succession of these  environments 

during i ts  se rv ice  l i f e .  The va r i e ty  of f ac to r s  inf luencing each r e p e t i t i o n  

of the  environment w i l l  create a randomness i n  the  parameters descr ibing the  

environment , such as frequency content and l eve l .  

The design of a laboratory test t o  adequately s imulate  these  environments 

i s  hampered by the  l i m i t a t i o n s  of present  test  equipment and test philosophy. 

Of choices cu r ren t ly  ava i l ab le ,  a sum of modulated s inusoids  appears most 

appropriate  from the  s tandpoint  of s imulat ing the  des i red  waveform. 

appl ica t ion  of such a tes t ,  however, t o  s imulate  t h e  s t r u c t u r e ' s  s e rv i ce  l i f e  

has one obvious shortcoming. It f a i l s  t o  account f o r  t he  an t i c ipa t ed  random- 

ness  i n  t h e  se rv ice  environment. 

Successive 

Time-modulated o r  shaped random e x c i t a t i o n  has been considered f o r  t h e  
* 

simulat ion of some of t hese  environments [1,2,3,4]. Application has  been 

r a t h e r  l imi t ed  however and no attempt has been made t o  sys temat ica l ly  

* 
Numbers i n  square brackets  r e f e r  t o  references a t  end of t he  report .  



i nves t iga t e  t h e  i s o l a t e d  e f f e c t s  which c l e a r l y  def ined system and input  

parameters have on the  fundamental c h a r a c t e r i s t i c s  of t r a n s i e n t  rms response. 

Such an inves t iga t ion  i s  an important p re requ i s i t e  t o  f u r t h e r  considerat ion 

of t h i s  s imulat ion f o r  t e s t i n g  purposes. 

study i s  therefore  t o  provide an a n a l y t i c a l  bas i s  f o r  f u r t h e r  inves t iga t ion .  

I n  s o  doing, emphasis has been placed on a formulation compatible with 

present methods of da t a  ana lys i s  and laboratory test c a p a b i l i t i e s .  

The primary objec t ive  of t h i s  

The a n a l y t i c a l  procedure discussed here in  is based on the  t r a n s i e n t  

rresponse of a l i n e a r  damped mechanical o s c i l l a t o r  t o  a suddenly applied 
* 

rms 

s t a t iona ry  process.  

f o r  a s t a t iona ry  process having an a r b i t r a r y  power spectrum, but  only r e s u l t s  

f o r  a white process w e r e  presented. The not ion of response t o  a suddenly 

appl ied s t a t i o n a r y  input  provides a conceptual t i e  between s t a t iona ry  and 

nonstat ionary response i n  t h a t  the  t r a n s i e n t  rms response asymptotically 

approaches the  s t a t iona ry  value a f t e r  t he  i n i t i a l  event.  

This problem w a s  considered by Caughey and Stumpf [5] 

The next p a r t  of t h e  ana lys i s  concerns the  sum of two such s t e p  inputs  

of a s t a t i o n a r y  process t o  create a rectangular  modulation. This concept is 

then general ized t o  include t h e  sum of N s t e p  inputs .  I n  t h i s  way a r b i t r a r y  

modulating funct ions are approximated by staircase functions.  Reasonably 

good approximations of t r a n s i e n t  rms response r e s u l t  from r a t h e r  crude 

approximations t o  the  modulating funct ion s i n c e  response is  derived by 

in t eg ra t ing  over t h e  modulating funct ion.  

* 
A l l  s ta t is t ical  averages discussed i n  t h i s  repor t  are ensemble 
averages r a t h e r  than t i m e  averages s i n c e  the  operat ions apply 
t o  nonstat ionary processes.  

2 



The analys is  is  developed i n  Sect ion 11. Idea l i za t ions  of both s t r u c t u r e  

and environment are f i r s t  discussed. 

response are then presented f o r  each of t h ree  d i f f e r e n t  modulating funct ions.  

The closed form so lu t ions  t o  these  i n t e g r a l s  follow. Section I11 contains a 

discussion of t h e  parameter study made t o  inves t iga t e  t h e  behavior of rms response 

f o r  each of t h e  th ree  modulating functions.  An approximate method t o  compute 

rms response f o r  a r b i t r a r y  modulating funct ions is developed and discussed i n  

Section I V .  

exponential  modulating funct ion.  

The i n t e g r a l  expressions f o r  t h e  r m s  

A comparison is made with the  exact so lu t ion  derived f o r  t he  

3 



11. ANALYSIS 

1. Idealizations 

The stated objectives are best served by postulating suitable idealizations 

for the system and its dynamic environment. Many approaches to structural 

dynamics analysis rely on the notions of the single-degree-of-freedom system. 

Among these are analysis by response spectra and the normal mode method. 

of its simplicity and fundamental importance, the single-degree-of-freedom 

structural model is adopted here. 

function or impulse response function 

Because 

Such a system is specified by its Green's 

-Bt 
h(t) = u(t) 

where 

8 = 5wo 

w = w , the damped natural frequency 
5 = fraction of critical damping 

0 

w = undamped natural frequency 
0 

the unit step function. 
1 :  t'0 

Asuitable idealization is also sought for the input. It is desirable 

to optimize the trade-off between simplicity and flexibility. 

models for nonstationary processes have been investigated. 

A number of 

Among these are 

(1) a finite sum of time-modulated harmonics with random phasing [ 6  I ,  ( 2 )  

filtered sho noise with time dependent intensity 

(3) time-modulated filtered white processes [ 2 , 3  1. The relationship between 

4 



(2) and (3) has been discussed i n  Reference [3 ] .  

A somewhat d i f f e r e n t  technique suggests i t s e l f  f o r  t h e  s imulat ion of 

t r a n s i e n t  random v ib ra t ion  environments i n  the  laboratory.  Since t h e  random 

v ib ra t ion  consoles now used f o r  S ta t ionary  tests are capable of producing 

v i r t u a l l y  any power s p e c t r a l  densi ty  o r  p.s.d. shape by summing a number 

f i l t e r e d  white no ise  processes,  i t  i s  of i n t e r e s t  t o  consider t h a t  class of 

nonstat ionary process which can be generated from a s t a t iona ry  process of 

a r b i t r a r y  p.s.d. and modulating function. I n  practice, therefore ,  one is 

not r e s t r i c t e d  t o  only those p.s.d. 's which correspond t o  a s i n g l e  f i l t e r  

output.  For t h e  purpose of ana lys i s  one i s  not  r e s t r i c t e d  t o  the  exact 

frequency response c h a r a c t e r i s t i c s  of a s i n g l e  common f i l t e r  i f  a simpler 

expression can be found t o  spec i fy  the  second order  s tochas t i c s  of a 

s t a t iona ry  process.  

- * 
A s tochas t i c  process w i l l  be denoted by x ( t ) ,  a f t e r  Barnes , t o  

d i s t ingu i sh  i t  from de te rmin i s t i c  funct ions wr i t t en  without t h e  double bars .  

The mean of x ( t )  is given by 

and i t s  au tocorre la t ion  funct ion by 

I f  mx(t) = 0 then R,(t ,t ) = K (t ,t ), t h e  autocovariance func t ion  of 

x ( t ) .  = RX(') where 

1 2  x 1 2  - 
I f  x(t) i s  s t a t iona ry  and ergodic then R ( t l , t2 )  

X - 

* 
J. L. Barnes, Professor  of Engineering, Universi ty  of Cal i forn ia ,  
Los Angeles. 

5 



T = t2- tl, the correlation interval. 

A time-modulated process y(t) may be specified where 

- 
L(t) = f(t) g(t) 

The modulating function f(t) is deterministic and z(t) is a stationary 

ergodic process with zero mean. The process y(t) is nonstationary. Then 
- 

The stationary autocorrelation function for the response of a second order 

filter to white noise excitation is 

where 

T = t2 - tl, the correlation interval 
a = 5 P o  

P = Po 

5 = fraction of critical damping 

= undamped filter frequency Po 

Considerable simplification is achieved by dropping the second term. 

when a <<I p the second term may be neglected. 

damped second order filter. 

In fact, 

This is the case of a lightly 

A s  alp grows large the importance of the 

6 



oscillatory term diminishes and the second order filter tends to look more 

like a first order filter. 

The stationary autocorrelation function 

describes a non-white process of arbitrary 

The Fourier transform of R (T) yields the corresponding p.s.d. function S(n) 

which is 

bandwidth and center frequency. 

X 

This function has the same basic charact istics as that for 

the response of the second order filter to white noise described above. 

That is for a << p, the half power point 

banawidtk and center frequency can be varied independently permitting the 

evaluation of a continuous range of individual cases ranging from a pure 

sinusoid to pure white noise and any center frequency of interest. 

bandwidth is approximately 2a, and the 

Various modulating functions have also been considered. They include 

the step, rectangular and half sine functions which have been applied to 

white noise processes [2,5]. An increasing-decreasing exponential function 

has been applied to the filtered white noise process [ 3 1 .  The latter was 

adopted for earthquake simulation problems where a was of the same order as 

p and where the modulating function varried rather slowly in time. 

7 



Three modulating functions f(t) are considered in this section, 

f(t) = u(t) . , ,the step function 

f(t) = u(t) - u (t-to)-, the rectangular function 

f(t) = u(t)e , the decaying exponential 
-At 

2. The Variance of Structural Response 

The equation of motion for the displacement response z(t) 0f.a base 

excited single-degree-of-freedom system with viscous damping is 

2 S(t) + 26 2(t) + wo z(t) = -y(t) 

where y(t) denotes 

given zero initial 

base acceleration. The solution of the equation for z(t) 

conditions is 
W 

z(t) = - 1 h(t-T) y(~) d.c 
-00 

where T is used here as a dummy variable and does not denote correlation 

interval. The autocorrelation function of the response is given by 

The variance of response is obtained by setting t 

evaluating the integral. 

= t2 = t and then 1 
These integrals and their solutions are presented 

8 



for the three modulating functions. 

dimensionless form where the following constants and functions are defined t o  

simplify the notation: 

The results of the integrations are in 

- w+P PI - - w 

- w - p  
p2 - w 

2 2 
a + P1 

a +P2 A12 - 

A21 = b + P1 

- 
- 

2 2 - 

2 2 

A22 = b 2 + $i2- - 2  

1 

(a+b)2+ 4 

- - 
c1 - + a  

9 



Dl - TPlb A21 A12 A21 A12 A21 a P 1  A21 ) - a p 1  + p2 
- - + 

p2 - a P 2  + 

- - + 
D2’ - YP1 %1 A22 A12 A22 A12 A22 

ab A21 ) 2 

- ab + - p 1  p2 D3 - -L( 2 p 1  + 
- 

A21 A12 A21 A12 A21 

2 
ab D4 2 + + 

A12 A22 A12 A22 

2 - ab - p.1 

- 2AllA21 
- 

- ab + PIP2 

2All A22 

- 
E12 - 

- a P 1  + P l b  

2All A21 

- 
E13 - 

ab + P2P1 - 
E21 - 2A12A21 

2 
ab - P2 

2A12 A22 

- - 
E22 - 

= a P 1  - P2b 

2A12 A21 

- 
E2 3 

10 



- aP2 - P p  - 
E14 - 2All A22 

Plb + a P 1  

E31 = 2All A21 

- P p  - aP2 

E32 = 2All A22 

- p12 - a b  - 
E33 - 2All A21 

- PIP2 + a b  

E34 = 2All A22 

- P p  - bP1 - 
E41 - 2A12 A22 

- P2b + bP2 

E42 = 2A12 A22 

2 - PIP2 + b - 
E43 - 2A12 A21 

- 
E44 

- (a+b) w t  B ( t )  = e 

-(a+b)wt sin 2wt 

-(a+b)wt cos 2ut 

C l ( t )  = e 

C 2 ( t )  = e 

-but sin p u t  D l ( t )  = e 1 

-but D 2 ( t )  = e sin p2 w t  

-but cos p w t  D 3 ( t )  = e 1 

2 2  
P2 - b  

2A12 A22 

11 



-but cos p u t  2 D4(t) = e 

-aut  s i n  p u t  1 El(t) = e 

-aut E2(t)  = e s i n  p2 u t  

-aut cos p u t  1 E3(t)  = e 

-au t  cos p u t  2 E p  = e 

a. The Step Function: f ( t )  = u ( t )  

The var iance  of response t o  a s t e p  modulated input  is  der ived 

from t h e  au tocor re l a t ion  funct ion as follows: 

where t h e  change of v a r i a b l e s  v 

made. 

= tl - - T ~  and v2 = t2 - T~ has been 1 

Upon l e t t i n g  tl = t2 = t ,  

1 2  



I n  dimensionless form the  so lu t ion  is 

2 4 2 u4 0 (t) = + B ( t )  f Fn C n ( t )  + D n ( t )  
n=l  Z n=l 

b. The Rectangular Function: f ( t )  = u ( t )  - u( t - tn )  

2 It i s  use fu l  t o  approach the  de r iva t ion  of 0 .(t) f o r  t h i s  

modulating funct ion from a somewhat more general  point  of view. I n  

so  doing, two processes are considered, one appl ied t o  t h e  system a t  

t = El and t h e  o the r  a t  t = 5,. 

t > El, t > 5 

The c ross  c o r r e l a t i o n  of response f o r  
* 

w i l l  be denoted by RZ (tl-C1, t2 -c2)  where 2 

1 3  



when tl = t2 = t. The response G 2(t) f o r  t h e  rec tangular  input  i s  

i d e n t i c a l  t o  t h a t  f o r  t h e  s t e p  input  p r io r  t o  t = 

e a s i l y  shown t h a t  

z 

. For t>to it is  

2 
cs (t) = R z ( t , t )  z 

* * * 
= RZ ( t , t )  - 2RZ ( t ,  t-to) + RZ (t-to, t-to). 

The f i r s t  and las t  terms are known from (a).  The general  so lu t ion  fo r  

* 
R z (t-+ t-S2) i s  

After  replacing El and 6, by 0 and toy respec t ive ly  and cancel l ing 

t e r m s  i t  is  found t h a t  f o r  t>t 
0’ 

14 



c. The Exponential Function : f(t) = u(t)e-ht 

In this case, noting the similarity between the step input and 

the decaying exponential, one can write 

-h(t-vl) - h(t-v ) 
e 2Rx(vl-v2) dvl dv2 

-6 (v1+v2) 
2 .  sin wv sin wv 1 

1 
h(vl) h(v2) = -2 w e 

-2ht 
Since e can be taken out of the integral, 

-2ht - ( 6 - h )  (v1+v2) 
sin wvl sin wv R (v --v ) dvl dv2. 5's L 2 e  2 x 1 2  

2 az(t) = e 
0 o w  

15 



The solution follows immediately from (a) where B is replaced 

by $-A. 

2 4 

n=l n=l 
x+x B(t) + c C (t) + f;j D (t) } (5) n n  n n  

w4 ( s i ( t )  = e 

where in this case 

B-A-a 6-A-a a = -  , b = -  w w 

16 



111. PARAMETER STUDY 

For t h e  purpose of t h i s  study key parameters w e r e  chosen which 

combine t h e  bas i c  proper t ies  of t h e  system and t h e  exc i t a t ion .  

<, a/B,  p/w, wto/2 . r r  and A / @ .  

of c r i t i c a l  damping in  t h e  system, the  input  t o  system bandwidth r a t i o ,  and 

They are 

The f i r s t  t h ree  correspond t o  the  f r a c t i o n  

the  input  t o  system center  frequency r a t i o  respec t ive ly .  The last two 

terms express the  cut-off t i m e  of t he  rectangular  modulating funct ion i n  

number of n a t u r a l  per iods of system o s c i l l a t i o n ,  and the  r a t i o  of input  

t o  system decay rates i n  the  case of the  exponential  modulating function. 

The ranges f o r  t hese  parameters w e r e  chosen s o  as t o  bracket  most 

cases  of i n t e r e s t  while a t  t he  same t i m e  providing an ind ica t ion  of t rends 

i n  the  response c h a r a c t e r i s t i c s  as a funct ion of parameter va r i a t ion .  

Thus th ree  parameter matr ices  were created,  one f o r  each of t he  modulating 

funct ions.  

The rms response w a s  computed and p lo t t ed  f o r  each case. 

presented i n  the  appendix. 

A l l  poss ib le  combinations of these  choices w e r e  considered. 

These p l o t s  are 

1. Parameter Matrices 

The S t e p  Function 

Both l i g h t  and heavy system damping w e r e  considered. Narrow, 

intermediate  and broad-band exc i t a t ion  w e r e  considered as w e l l  as frequency 

r a t i o s  of less than, equal  t o  and g rea t e r  than one. 

1 7  



1: 1 
\ 10 I /  

100 

.1 

when t, = io1  

when t, = .1 

.5 

1 I 2 

PIU = 

This matrix contains a t o t a l  of 18 cases, 

The Rectangular Function 

The same choices f o r  c ,  a/B and p/w w e r e  re ta ined  f o r  f i v e  values of 

cut-off t i m e .  The f i r s t  four  i l l u s t r a t e  the  dependence of r e s i d u a l  response 

on cut-off t i m e  within a p a r t i c u l a r  fundamental response period. A perPBd 

18 



ea r ly  i n  the  forced response w a s  chosen simply t o  demonstrate t he  worst case 

e f f e c t s .  Af te r  a s u f f i c i e n t l y  long t i m e  t he  r e s idua l  response becomes 

independent of cut-off t i m e .  The f i f t h  cut-off t i m e  w a s  chosen such t h a t  

t he  response is s t a t iona ry  p r i o r  t o  cut-off.  The parameter u t  / Z T  w a s  
0 

therefore  assigned the  values 

I 

uto/2a = 

1.25 

1 .5  

1.75 

2.0 

100 

10 

when 5 = .01 

when 5 = .1’ 

This matr ix  contains a t o t a l  of 90 cases. 

The Exponential Function 

Again keeping t h e  same choices f o r  5, a/@ and p/w, two values w e r e  

considered f o r  A / B .  

when 5 = .01 

A / B  = 

These correspond t o  decaying exponentials which drop from 1.0 t o  less than 

.05 i n  50 and 5 response per iods,  respect ively.  This matr ix  contains a 

t o t a l  of 36 cases. 

19 



The p l o t s  from these cases w e r e  used t o  i n f e r  t rends i n  the  behavior 

of t r a n s i e n t  response. Additional cases w e r e  then considered t o  confirm 

and c l a r i f y  these  trends.  

i n  the following sec t ion .  

The r e s u l t s  of t h e  parameter study are discussed 

2. Discussion of Results 

E i the r  one of two normalizing f a c t o r s  have been used i n  p lo t t i ng .  

X’ z ’  

They 
- 

are 0 

t o  a s t e p  input  of i ( t ) .  

t he  rms value of x ( t ) ,  and a t h e  asymptotic rms value of g ( t )  due 

The former w a s  used f o r  a l l  cases i n  t h e  bas i c  

parameter study and therefore  appl ies  cons is ten t ly  throughout the  appendix. 

The latter is used i n  t h i s  s ec t ion  t o  help d i s t ingu i sh  between the  

s t a t iona ry  and nonstat ionary response c h a r a c t e r i s t i c s .  By making the  

s t a t iona ry  response always uni ty ,  emphasis is  placed on the  t r ans i en t  

response c h a r a c t e r i s t i c s .  

The S t e p  Function 

Figures 1, 2 and 3 typ i fy  the  response of a mechanical o s c i l l a t o r  t o  

s t e p  inputs  of t he  s t a t iona ry  process under consideration. 

i s ,  of course,  non-negative a t  a l l  t i m e s .  I ts  t i m e  h i s t o r y  begins a t  t h e  

o r i g i n  and approaches a constant value asymptotically.  

t h e  s t a t iona ry  rms response t o  the  s t a t iona ry  p a r t  of the  input  and i s  i n  

agreement wi th  t h e  r e s u l t s  obtained by evaluat ing the  i n t e g r a l  

The rms response 

This value must be 

20 
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commonly used t o  determine s t a t iona ry  res 

(5 is  used t o  denote a constant  o r  s t a t iona ry  value. 

t h a t  these  levels are a f f ec t ed  by the  input  par  

t h e  area under the  product of t h e  two f 

of which are sketched i n  Figure 4)  increases  as p/w -f 1. It increases  (up 

It is  n 

t o  a point)  as a increases  f o r  p/w f 1, and decreases as 01 increases  f o r  
P* 

p/w = 1. Since S (QdQ = 1, the  asymptotic value depends on how t h a t  J_, 
u n i t  area is d i s t r i b u t e d  with respect  t o  t h e  frequency response funct ion of 

t h e  system. 

One of t h e  most outstanding f ea tu res  of these  p l o t s  i s  t h a t  f o r  narrow- 

band exc i t a t ion  a t  a frequency d i f f e r e n t  from system resonance t h e  t r a n s i e n t  

nus response overshoots i t s  asymptotic value.  The amount of overshoot can 

be q u i t e  l a r g e  as evidenced by Figure 3 ,  where f o r  5 = .l, p/w = 2 and 

a/f3 = .l, t h e  t r a n s i e n t  response exceeds the  s t a t i o n a r y  by a f a c t o r  of 2. 

The p r a c t i c a l  s ign i f i cance  of t h i s  f ea tu re  depends on t h e  p r a c t i c a l  

s ign i f i cance  of t he  input  parameters, p a r t i c u l a r l y  on t h e  bandwidth of t h e  

input .  It is c e r t a i n l y  conceivable t h a t  such a narrow-band exc i t a t ion  

could appear, f o r  example, on the  bed of a t ruck  dr iv ing  over a washboard 

road. The resonant frequency of a properly i s o l a t e d  payload would be  w e l l  

below t h e  expected frequency of t h a t  environment. Consequently, t r a n s i e n t  

displacements might e a s i l y  exceed those of s teady state. Furthermore, 

u a l l y  of s h o r t  durat  

response so t h a t  s t a  

easing system damping tends t o  increase system response. The 

, t h e  amplitudes of t h e  t r a n s i e n t  o s c i l l a t i o n s  

24 
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increase  and they decay less rapidly.  

Figure 5. 

These c h a r a c t e r i s t i c s  are shown i n  

Variat ions of t h e  input  parameters a and p not  only a f f e c t  t he  

asymptotic response but  t h e  i n i t i a l  t r a n s i e n t s  as w e l l .  Generally speaking, 

an increase  i n  a causes s t a t i o n a r i t y  t o  be reached more quickly as shown 

i n  Figure 6 where 0 Mathematically, 

t h i s  is explained by the  presence of t h e  decay term e 

i s  used as t h e  normalizing f ac to r .  
Z 

r -(a+B)t as a mu 

i n  Equation (2 ) .  This f a c t  is  of p r a c t i c a l  importance when the  durat ion of 

t he  input  is  l imi ted  as i n  the  case of a rectangular  o r  an exponential  

modulating funct ion f o r  example. For then, peak rms response may be 

a f fec ted  by the  rate of t r a n s i e n t  decay. 

Variat ions of t he  parameter p cause another i n t e r e s t i n g  e f f e c t .  I n  

Figure 2 i t  is  seen t h a t  when p/w = 1 the  only o s c i l l a t o r y  t r a n s i e n t  has  a 

frequency of 2 w  and t h a t  t r a n s i e n t  overshoot never occurs even f o r  very 

narrow-band exc i t a t ion .  It can be seen i n  Equation (2) t h a t  i n  general  

t h ree  frequency components are present :  

example, a l l  t h ree  can be seen i n  Figure 7. 

s m a l l  which tends t o  set up a beat ing e f f e c t  as shown i n  Figure 8. 

p/w = 1 

20-1, w - p and w + p. For 

As p/w -+ 1, w - p becomes 

When 

t h i s  frequency becomes zero s o  t h a t  t he  o s c i l l a t i o n  disappears.  

The Rectangular Function 

The most important conclusion regarding t h e  response of an o s c i l l a t o r  

t o  a rectangular  modulation of a s t a t iona ry  process is t h a t  t he  r e s idua l  

response may exceed the  forced response, even when t h e  forced response 

exceeds i ts  asymptotic l e v e l .  This f ea tu re  is evidenced i n  Figure 9 and 
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seems t o  occur only f o r  narrow-band e x c i t a t i o n  when p/w > 1. It is  not 

su rp r i s ing  i f  one considers t h e  r e s idua l  response t o  a s inusoida l  input  

suddenly removed. 

system at  the  t i m e  t he  input  i s  turned o f f .  

k i n e t i c  and t h e  s t r a i n  energies  T + U. 

The r e s idua l  response depends on t h e  energy s to red  i n  the  

This energy is the  sum of the  

I f  steady state i s  reached p r i o r  t o  

cut-of€, then f o r  s m a l l  damping i - = p Zmax. max 

and 

1 2  
2 max = - k z  U max 

> 'max* max For p/w > 1, T Then i t  i s  poss ib le  f o r  T + U > U a t  the  max 

t i m e  of cut-off i n  which case the  r e s idua l  displacement response w i l l  be  

g rea t e r  than the forced response. 

I n  general ,  i f  to occurs p r i o r  t o  reaching s t a t i o n a r i t y ,  t h e  r e s idua l  

response depends upon the  t i m e  within a p a r t i c u l a r  fundamental period a t  

which cut-off occurs as w e l l  as on t h e  t o t a l  number of periods of forced 

response. 

s t i l l  exceed the  s t a t iona ry  level, however. 

Otherwise it is completely independent of cut-off t i m e .  It may 

Because of t h e  i n i t i a l  and f i n a l  high l e v e l  t r a n s i e n t s  which a system 

may experience when subjected t o  a rectangular  b u r s t  of s t a t iona ry ,  narrow- 

band random, t h i s  modulating funct ion i s  obviously inappropriate  f o r  

practical  use. unless  such an environment ac tua l ly  e x i s t s  f o r  t h e  i t e m  
i"' 
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being t e s t ed .  

modulating funct ion r a t h e r  than one which only s imulates  durat ion.  

This example i l l u s t r a t e s  t h e  importance of using the  proper 

The foregoing conclusions may be of practical importance i n  another 

physical  s i t u a t i o n .  

t o  analyze t r a n s i e n t  data .  

tuneable bandwidths. 

manner previously described. 

conceivable t h a t  during per iods of t r a n s i e n t  behavior erroneous conclusions 

could be drawn from t h e  data .  

Analog power s p e c t r a l  dens i ty  analyzers are o f t en  used 

These devices are b a s i c a l l y  s i m p l e  systems having 

Some t r a n s i e n t  da t a  may e x c i t e  t h e  analyzer i n  the  

Depending on the  holding c i r c u i t  used, i t  is  

The Exponential Function 

The nns response t o  an exponent ia l ly  modulated input  demonstrates 

some of t h e  more p r a c t i c a l  aspects  of t h e  behavior observed from t h e  s t e p  

modulation. 

funct ion tends t o  e l imina te  those components of t h e  rms response associated 

with the  instantaneous input  a f t e r  a sho r t  t i m e ,  leaving only a r e s idua l  

type response s i m i l a r  t o  t h a t  observed a f t e r  cut-off f o r  t h e  rectangular  

modulating funct ion.  This can be seen i n  Figure 10. On the  o ther  hand, 

t h e  rms response t o  a slowly decaying modulating funct ion follows the  

p a t t e r n  of l o c a l  s t a t i o n a r i t y  [7]  a f t e r  t he  i n i t i a l  t r a n s i e n t s  have damped 

out.  That i s ,  i t  tends t o  follow the  s t a t iona ry  l e v e l  associated with the  

instantaneous level of t h e  modulating funct ion as i n  Figure 11. 

I n  general ,  i t  can be s a i d  t h a t  a sharply decaying modulating 

It w a s  earlier pointed out  t h a t  increasing t h e  input  bandwidth 

parameter a could r e s u l t  i n  higher  peak response f o r  an a t tenuated  input  

i f  s t a t iona ry  response is he ld  constant.  Three response h i s t o r i e s  f o r  
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d i f f e r e n t  values of a, are p lo t t ed  i n  Figure 1 2  where each is normalized 

t o  i ts  asymptotic level. These can be compared with Figure 6. 

The frequency parameter p/w w a s  var ied  i n  t h e  neighborhood of 

p/o = 1 t o  demonstrate t he  e f f e c t  of a l imi ted  durat ion input  on peak rms 

response. 

rms response moves t o  t h e  r i g h t  and consequently becomes a t tenuated  t o  a 

higher  degree by the  exponential  modulating funct ion.  

compared with those i n  Figure 8. 

It can be seen i n  Figure 13 tha t  as p/w + 1 t h e  f i r s t  peak of t h e  

These p l o t s  can be 

A p r a c t i c a l  appl ica t ion  of t h i s  ana lys i s  is t o  consider t h e  response 

of a s m a l l  component t o  pyrotechnic shock induced t r ans i en t s .  

t r a n s i e n t s  may have a frequency d i s t r i b u t i o n  centered a t  1500 cps with a 

bandwidth of 1000 cps and have t h e  approximate shape of a decaying 

exponential  of 50 milliseconds durat ion.  I f  t he  component has a resonant 

frequency of 100 cps and 5% damping, i t s  response t o  the  simulated shock 

environment is  t h a t  shown i n  Figure 14. I n  t h i s  case t h e  maximum t r a n s i e n t  

response is about 57% of t h e  s t a t iona ry  l eve l .  

reduce t h i s  percentage even fu r the r .  

These 

Lower system damping would 
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IV. SUPERPOSITION 

It was suggested earlier that since a function f(t) can be approximated 

by a sum of step functions, that the ora st input 

modulated by f(t) can be approximated by summing a number of terms 

t-g.) 
* 

similar to that given by Equation ( 3 ) .  
RZ (t-Sp J 

To this end f(t) is replaced by 

N 

Then according to Equation (1) 

If the order of integration and summation is interchanged then 

A suitable change of variables gives 
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The number of computations * i s _  cut  i n  ha l f  by observing t h e  symmetry of 

R about the  5 = 5, plane. I n  t h i s  case 
* 

z 1 

* N 

i= 1 

2 
0 z (t> = ai2 R~ (+Si, t-ci) 

' *  
ai a j  RZ Mi, t -S j )  * 

i=l j=i+l 

A computer program w a s  w r i t t e n  t o  ca r ry  out  t hese  computations. To obta in  

some ind ica t ion  of t he  accuracy of t h i s  approximation, t h e  exponential  modulating 

funct ion w a s  approximated by t h e  staircase funct ion shown i n  Figure 15. 

Examples of t h e  r e s u l t s  are shown i n  Figures 16 and 17 .  

po in ts  p lo t t ed  from the  approximate so lu t ion  while t h e  s o l i d  l i n e s  ind ica t e  

t h e  exact so lu t ion .  

The c i r c l e d  do t s  are 
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The agreement has  been q u i t e  good f o r  those cases considered where t h e  

decaying exponential  w a s  replaced by an e igh t  s t e p  s t a i r c a s e  funct ion.  The 

computation of 40 poin ts  took about 30 seconds on t h e  TRW SDS-940 t i m e  

shar ing computer. 
- 

This technique provides a very use fu l  t o o l  f o r  es t imat ing s t r u c t u r a l  

response t o  nonstat ionary random environments s ince  t h e  modulating funct ion 

can be spec i f i ed  pointwise. These poin ts  correspond t o  t h e  instantaneous 

rms value of t h e  e x c i t a t i o n  process and can be e a s i l y  computed from d i g i t i z e d  

da ta .  
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V. CONCLUDING RE;MARKS 

1. summary 

This repor t  has  presented the  r e s u l t s  and conclusions of a parameter 

study devised t o  i l l u s t r a t e  t he  behavior of t he - t r ans4en t  rms 

response of a simple mechanical o s c i l l a t o r  t o  a t imeaodu la t ed  s t a t iona ry  

process of a r b i t r a r y  bandwidth and center  frequency. 

were obtained f o r  t he  s t e p ,  t he  rectangular  and the  decaying exponential  

modulating funct ions.  A matrix of cases  w a s  es tab l i shed  i n  parameters 

descr ibing system damping, bandwidth r a t i o ,  frequency r a t i o  and modulating 

funct ion.  These w e r e  var ied  independently and the  r e s u l t i n g  rms response 

h i s t o r i e s  w e r e  computed and p lo t t ed .  

general ized.  

Closed form so lu t ions  

The r e s u l t s  w e r e  discussed and 

From t h e  s t e p  modulation i t  w a s  learned t h a t  t r a n s i e n t  response l e v e l s  

o f t en  exceed t h e i r  asymptotic o r  s t a t i o n a r y  values f o r  a narrow-band input  

centered a t  a frequency d i f f e r e n t  from system resonance. Increasing t h e  

bandwidth of t h e  input  tends t o  e l imina te  these  t r a n s i e n t s  which are associated 

with the  input  center  frequency. When the  input  and system frequencies are 

c lose  together  t h e  response exh ib i t s  a bea t ing  phenomenon. 

From t h e  rec tangular  modulation i t  w a s  learned t h a t  f o r  narrow-band 

input  t h e  r e s idua l  response can exceed t h e  forced response i f  t he  input  

frequency i s  g r e a t e r  than t h a t  of t he  system. The r e s idua l  response i s  

influenced by cut-off t i m e  only i f  t h a t  t i m e  occurs before  s t a t i o n a r i t y  i s  

reached. 

The exponent ia l  modulating funct ion has the  e f f e c t  of l imi t ing  t h e  

r e s idua l  type response associated with energy build-up i n  the  system as w e l l  
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as a t tenuat ing  t h e  forced response associated with t h e  instantaneous s t rength  

of the  input .  When rms response w a s  normalized by i ts  s t a t iona ry  l e v e l  t he  

exponential  modulating funct ion a t tenuated  more severe ly  t h a t  response 

assoc ia ted  with a narrower-band input  and an input  center  frequency c lose r  

t o  the  resonant frequency of t he  system. 

The r e s u l t s  derived from t h e  rec tangular  modulating funct ion w e r e  used 

t o  formulate an approximate so lu t ion  f o r  t h e  response t o  an a r b i t r a r i l y  

modulated s t a t iona ry  input .  

an e ight  s t e p  s t a i r c a s e  function, agreement between t h e  approximate and 

exact so lu t ions  w a s  wi th in  a few percent f o r  t h e  cases compared. 

When t h e  exponential  funct ion w a s  replaced by 

These r e s u l t s  provide an a n a l y t i c a l  capab i l i t y  f o r  assessing t h e  

p o t e n t i a l  value of a time-modulated random v ib ra t ion  tes t  f o r  s p e c i f i c  

appl ica t ions .  The parameters chosen t o  descr ibe  t h e  environment are read i ly  

observable and permit a quick evaluat ion of t he  s e v e r i t y  of t he  environment 

f o r  the  system concerned. 

s t r u c t u r a l  response t o  a nonstat ionary environment can d i f f e r  by as much 

as a f a c t o r  of 2 i n  e i t h e r  d i r ec t ion  from t h e  s t a t iona ry  response r e su l t i ng  

from the  appl ica t ion  of s t a t i o n a r y  e x c i t a t i o n  a t  the same leve l .  

P r a c t i c a l  examples have been suggested i n  which 

2. Recommendations f o r  Future Work 

On t h e  b a s i s  of t h i s  r epor t ,  s eve ra l  important top ics  are recommended 

f o r  f u r t h e r  inves t iga t ion .  

implementation of t h i s  method f o r  laboratory t e s t i n g .  

They o u t l i n e  the  remaining s t e p s  leading t o  t h e  
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0 Demonstrate t he  v a l i d i t y  of t he  proposed s imulat ion f o r  
s p e c i f i c  dynamic environments of i n t e r e s t ,  such as those 
measured within spacec ra f t ,  a i r c r a f t ,  ground vehic les  and 
shock loaded ground s t ruc tu res .  

0 Inves t iga t e  t h e  f ac to r s  r e l a t i n g  t o  test r e p e a t i b i l i t y  as a 
d e f i n i t i v e  b a s i s  f o r  test spec i f i ca t ion .  A test is  conceived 
t o  embody a s p e c i f i c  number of simulated t r a n s i e n t s ,  each random 
i n  nature .  A proper test would not only s imulate  the  appearance 
of each t r a n s i e n t  but t he  number of them expected i n  the  se rv ice  
l i f e  of t he  test  i t e m .  For t e s t i n g  purposes, a cons t r a in t  is  
placed on the  s e l e c t i o n  of t h a t  number. It must be s u f f i c i e n t l y  
l a r g e  so t h a t  repeat ing t h e  test w i l l  y i e l d  s t a t i s t i c a l l y  
equivalent  r e s u l t s .  

a Demonstrate t he  a b i l i t y  of ex i s t ing  laboratory equipment t o  
provide these  exc i t a t ions .  
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APPENDIX: P l o t s  from er Study 

The p l o t s  f r o m t h e  b a s i c  parameter s tudy f o r  t h e  th ree  modulating 

funct ions are presented i n  t h i s  appendix. A summary of cases i s  

contained i n  the  following t h r e e  t ab le s .  

TABLE A I. 

Figure 
No. 

A 1  
A 2  
A 3  

A 4  
A 5  
A 6  

System 
damping 

r 

0.01 

J. 

1 
0.1  

The Step Function 

f ( t )  = u ( t )  

Frequency 
r a t i o  

PIW 

0 . 5  
1 
2 

0 . 5  
1 
2 

Bandwidth 
r a t i o  

a l e  

1, 10, 100 

5 - 1 1  

1 1 1  
0.1, 1, 10 
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TABLE A 11. The Rectangular Function 

f ( t )  = u ( t )  - u(t- to)  

Figure 
No. 

A 7  
A 8  
A 9  
A 10 
A 11 

A 1 2  
A 1 3  
A 14 
A 15 
A 16 

A 1 7  
A 18 
A 19 
A 20 
A 21 

System 

5 
damping 

O r  

1 
I 

Frequency 
r a t i o  

P/W 

0.5 ' I 
Bandwidth 

r a t i o  
a/ B 

1, 10,  100 

I I  I 
I 1  
I I  

cut-off 
t i m e  

W t 0 / 2 7 T  

1.25 
1.5 
1.75 
2 
100 

1.25 
1.5 
1.75 
2 
100 

1.25 
1.5 
1.75 
2 
100 

5 1  



TABLE A 11. The Rectangular Function (Cont'd) 

f ( t )  = u ( t )  - u( t - to)  

Figure 
No. 

A 22 
A 23 
A 24 
A 25 
A 26 

A 27 
A 28 
A 29 
A 30 
A 31 

A 32 
A 33 
A 34 
A 35 
A 36 

System 
damping 

r 

0 . 1  

Frequency 
r a t i o  
P l w  

0.5 

I 

Bandwidth 
r a t i o  

alB 

0.1, 1, 10 

cut-of f 
t i m e  

wto/2a 

1.25 
1 .5  
1.75 
2 
10 

1.25 
1 .5  
1.75 
2 
10 

1.25 
1.5 
1.75 
2 
10 
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TABLE A 111. 

Figure 
No.  

A 37 
A 38 
A 39 

A 40 
A 4 1  
A 42 

A 43 
A 44 
A 45 

A 46 
A 47 
A 48 

System 
damping 

5 

0.01 

1 

I 

I 
0 . 1  

1 

The Exponential Function 

Frequency 
r a t i o  
PIW 

0.5  
1 
2 

0 .5  
1 
2 

0 .5  
1 
2 

0.5 
1 
2 

Bandwidth 
r a t i o  
alB 

1, 10,  100 

- 1  1 1 

I l l  
0.1, 1, 10 

1 1 . 1  

111 

Decay 
r a t i o  

A / @  

1 

1 

1 

1 

5. 

10 

0 . 1  

1 
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